SANUARY /FERAIATY, 1580, IS5LE 2

COMPUTE, 3

Machine Language Versus
Basic Prime Number
Generation Maowin L De Jong

Editor’s Note:
Watch your local dealer for Marorm L. De fong’s new book:
Programming and Intexfacing the 6502. Duc in January, the
450 page work 15 expected to sell for §11.95. Publisher:

Howard W. Sams Co.

Indianapolis, IN.

The attached program will calculate prime numbers
of the form 2N - 1, for poster and/or prime

number enthusiasts who also read COMPUTE. It
was motivated by one of my students who was
searching for perfect numbers (numbers whose factors
add to give the number itself). The student wrote

a BASIC program for an APPLE, and the program
would calculate and print 210000, [t ook 1 hours

1o do this. Thinking that perhaps the same thing
could be done in machine language, I wrote the
program given here with only minor modifications.
It calculated 219008 in 11 minutes, illustrating

the advantage in speed that machine language offers
for certain tasks,

The program listed here calculates and prints
211213 - 1, a number that is known to bhe prime.
With a little more memory space than the 4K
on my AIM 65, one could calculate and print the
largest known prime {as of this writing) number,
namely 244497 - 1_ The number of digits in a
number of the form 2N can be shown to be 1 +
Nlog2. In the program given we calculate 211213
giving the number of digits as 1 + I1213L0gw(2)

$CR08 A9 00 START 1DA $00
R0 85 04 STA TABLE
ROC A9 04 LDA $0k
O020E 85 05 STA TABLE+1
@10 AO 00 LDY $00
12 A9 00 NELT LDA $00
Rly 91 04 LOOP STA (TABLE),Y
(R16 C8 INY
217 DO FB BNE LOOP
w19 Eb 05 INC TABLE+1
21B A5 05 LDA TABLE+1
1D €9 10 CMP $10
R1F 90 F1 BCC NEXT
21 A9 04 LDA $04
@223 85 05 STA TABLE+1
0225 F8 SED
0226 A9 0L LDA $01
228 8D 00 O4 STA TABLO
022B A9 0O LDA $Q0
2D 85 00 8TA 10
2F 85 01 STA MID

= 3376 digits. The number 24497 requires 13395
digits. Each memory location can store two BCD
digits, so 211213, requires 1688 or about 2K locations
in memory.

Some notes on the program follow. We allocated
locations $0400 to $0FFF to hold the number. This
is many more locations than are required to find
211213, but the program was used to find some
larger powers of two also. First, the locations that
are to contain the number are cleared to zero.

This occurs in instructions $0208 to $0220. The in-
direct indexed addressing mode is used to reference
the memory locations to be cleared. The address
of this table is stored in $0004 and $0005. Next,

a one is stored in the lowest address of the table.
This number is doubled 11213 times giving 211213,
The locations $0000, §0001, and $0002 keep track
of the number of doubling times. In the instruc-
tions located from $0261 to §0272 this number is
tested to see if it has reached 11213, Finally,

one is subtracted from the number and it is

printed by calling an AIM 65 subroutine at

$F000. Owners of other systems can simply use their
own output subroutine. It should also be clear
from this explanation and the program comments
what locations in the program must be modified

to handle other numbers of the form 2N,

There is really no practical use for the program
or the output. However, prime numbers and perfect
numbers have been of considerable interest to
mathematicians for centuries. Perhaps some
6502 user will discover an even larger prime
number than 244497 but don’t underestimate the
task.

P.S. A lot of leading zeros get printed before the
number starts.

Load pointers to number table.

Initialize ¥ index to zero to

clear all table lccations to zero.
Put zerc in each table locatien.
Increment Y to fill page with zeros,

Go to the next page in the table.
Are all the pages completed?

No. Then fill another page.

Yes. Reset pointers to the base
address of the table,

All subsequent additions will be

in decimal.

Start with one in lowest digit of
the table.

Initialize the addition counter to
zero; three locations ($00,$01,502)

COMPUTE. LATATY

§
3
BRESRB2BREEE B

025F 85 05

@63 €9 13
0265 DO CC
0267 A5 01
@69 €9 12
268 DO C6
WD A5 02
WEF €9 01
®71 90 CO
$0273 18

0274 AD 00
0277 E9 00

0R7C A9 CF
R7E 85 05
0R&0 AQ FF
@82 B1 04
@8, A2 TE

O4
Ol

COUNT

PAGAD

DOWN

ur
THERE

AHED

STA HI

cLC

LDA $0L

ADC LO

STA LO

LDA MID

ADC $00
STA MID

LDA HI

ADC $00
STA HI

CIC

LDA {TABLE),Y
ADC (TABLE),Y
STA (TABLE),Y
INY

BNE PAGAD
INC TABLE+1
PHP

LDA TABLE+L
CMP $10
BCS DOWN
FLP

JMP PAGAD
LDA $04

STA TABLE+1
LDA 1O

CMP $13
BNE COUNT
LDA MID
CMP $12
BNE COUNT
LDA HI

CMP $01

BCC COUNT

cLe
LDA TABLD
SEC $00

STA TABLD

LDA $OF

STA TABLE+1
IDY $FF

LOA (TABLE),Y
LIX $FE

PHA

LSR A

LSR A

LSR A

LSR A

CLC

ADC $30

JSR PRINT

LDA TABLE+1
CMP $04

BCS UP

BRK

in page zero.

Clear carry for additions,

Increment the addition counter,

10, MID, and HI each time the number
is added to itself.

Carry from L0 addition into MID,

Result into MID.
Carry from MID additicn into HI.

Result into HI.

Clear carry for adding THE NUMBEA.
Get. a piece of THE NUMBER.

Add it to itself.

Store THE NUMBER.

Increment Y to repeat the addition
for an entire page of memory.
Increment the page number,

Store P to keep track of any carry.
Have we finished adding the entire
table?

Yes. Then check to see if we have
added enough times. No. Add more.

Reset table pointer.

Check add counter. Is it equal to
0112137

Subtract one from 211213

THE PRIME NUMBER.

to get

Foint to the top of the table to
read THE PRIME NUMBER out from
the most-significant digit to the
least-significant digit.

Convert the BCD digits to ASCII.
Save two digits on the stack.

Get the most-significant nibble.
Mowve it into the low-order nibble.

Here we have an ASCII digit so
Jump to the output routine.

Do we need to get another digit?
No.

Yes. Get the digits.

Mask the high-order nibble.
Convert it to ASCII,

Get some more of the number from
the same page.

Change pages.

Back to the monitor. ¢

